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Exact Performance Analysis of Two Distributed Processes with

Multiple Synchronization Points

MARC ABRAMS AND ASHOK K. AGRAWALA
Depament of Computer Science, University of Maryland, USA

Abstract. We describe a technique to exactly analyze the run-time behavior of a

class of distributed computer programs composed of two processes and an

arbitrary number of synchronization points. A process is viewed as a flow chart

without branches, whose nodes represent local conputation requiring a

deterministic time to execute, and whose arcs correspond to interprocess

communication. Each synchronization point is a constraint prohibiting a transition

in one flow chart when the other process is executing a certain sequence of nodes

in its flow chart. The global program state specifies at which flow-chart node each

process is currently executing or blocked. We define a steady-state behavior to be

a finite sequence of global states and transitions repeated forever. We solve for the

steady state using a Diophantine equation (whose coefficients and unknowns are

Integers) derived from the geometric concurrency model. The geometric model

uses a two-dimensional Cartesian product of nonnegative real numbers to represent

all feasible global-system states. The sequence of nodes In each flow chart is

mapped to consecutive Intervals along each axis. Various lines through the plane

correspond to various run-time behaviors. The lines are obstructed by line

segments whose spatial arrangement In the plane corresponds to the

synchronization constraints. The model solution yields the sequence of

synchronization points where the program blocks during steady state, the blocking

durations, and the duration of concurrent execution between synchronization points.

An algorithm is presented to solve the chief numerical problem of evaluating the

minima of two arithmetic functions arising in the analysis.
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1. Introduction

The state of many continuous physical systems (e.g., an electrical circuit)

may reach a fixed value as time grows to Infinity. Alternately, the system

may reach a limit cycle behavior, In which the stable system state varies

periodically in time. In this paper, we analyze the dynamics of a class of

distributed programs that displays similar behavior. We consider a

distributed program to be a collection of asynchronous, sequential processes

that occasionally synchronize or communicate by messages.

The class of programs we analyze meets the following assumptions.

Programs consist of two processes. All events in the program take constant

time. Processes execute asynchronously on separate hardware processors.

Processes communicate and synchronize through messages, for example, by

send and receive primitives. The synchronization constructs in each process

cannot be embedded in conditionally executed pieces of code. Finally, each

process loops without termination.

We view each process as a flow chart without branches. Each flow-chart

node corresponds to the Instructions or statements In the code which are

executed between two consecutive send/receive primitives. Thus, flow-chart

arcs correspond to a message being sent or received.

Each flow-chart node is a local state of the corresponding process. The

global state of the program consists of the local state of each process. The

time required to execute a state is the state occupancy time. We describe an

execution behavior of a program by the sequence and occupancy times of

global states occurring during execution, called the program trajectory. A

program Is In steady state when It repeats a finite sequence of global states

and occupancy times forever.

Given the constant local state occupancy times and the communication

delay between processes, we solve for the trajectory. The trajectory yields, at

steady state, the values of the:

AL
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(1) sequence of synchronization points where the program blocks;

(2) blocking duration at each synchronization point, and -

(3) duration of concurrent execution between synchronization points.

2. Related Work

Alternate techniques to model distributed program performance are queueing

networks (e.g., [7, 8]), stochastic processes (e.g., [6, 12]), Petri nets (e.g.,

[16]), and stochastic automata ([13, 14]). A survey of these approaches is

contained In [1], Chapter 1.

These techniques generally seek average values of performance measures

at a steady state. However, it may be difficult to understand why the

program produces these average values. The motivation for our work to

obtain the trajectory Is to gain insight into how to change the program to

improve performance.

The geometric concurrency model is the basis for our analysis. The

model is similar to Dijkstra's process graph [4] for characterization of

deadlocks In multiprocessor systems. The geometric model Is also similar to

two-dimensional diagrams used in verification of parallel programs and

communication protocols to illustrate interleaving of operations.

The geometric model has been analyzed by Papadimitriou and others

[10, 11, 17] to detect deadlocks in a lock-based database transaction system

with two transactions. The model was later used by Carson [2, 3] to prove

liveness properties of concurrent programs composed of an arbitrary number

of processes with straight-line sequences of semaphore operations.

We use the geometric model for performance analysis, in contrast to

proving correctness and liveness properties. Moreover, we analytically solve

the model, while prior work devised an algorithm (see Section 5).

Advantages of an analytic solution Include speed In model solution, and

Insight Into program performance. However, we require additional

assumptions of uniprogramming and constant execution times.
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We next discuss mapping a program to the geometric model. We then

denve a steady-state equation from the model, and solve-for the trajectory.

Finally, we present an algorithm which numerically calculates the steady

state, and then illustrate its use.

3. Geometric Concurrency Model

We Introduce the geometric model through an example: the dining
philosophers' problem [5]. In this problem, two philosophers eating a meal

share one set of chopsticks. Each philosopher alternately thinks and eats. If

one philosopher wants to acquire the chopsticks while the second is eating,

the first must wait. The problem can be modeled by a program containing

one process for each philosopher.'

The corresponding two flow charts are shown in Figure 1(a), each containing
two states. We consider the chopsticks to be held by a process (and hence

unavailable to the other process) exactly when a process is in its

EAT/RELEASE state. Therefore a process blocked at the transition out of its
THINK/ACQUIRE state will unblock the moment the other process leaves its

EAT/RELEASE state.
We denote the real and integer numbers by R and Z, respectively. A

superscript of * or + (e.g., R*, Z+) restricts R or Z to nonnegative and

positive numbers, respectively. The notation In the table below is introduced

solely to formalize the geometric model, and (except for tr) is not used

outside of this section.

A third process is required to receive requests for the chopsticks and to insure mutually exclusive
chopstick use. We do not explicitly model this process here, in the interest or simplicity. liowever,
the execution time or this process can be included at appropriate points in the philosopher process
Row charts, as Illustrated in [I].



4

Symbol Meaning

r E {1,2} denotes either process 1 or 2

M r E Z" number of local states in process r

n, n', n" E {0,1,..., M r I1 denotes one of the Mr states in process r

an local state in process r, such that

V ~n',+i mod Mr Is the successor

of state Or in the flowchart of process r
tr e R+  state occupancy time of ar

q e Z" each process r cycles through states
r r ro, a, .. ,Mr forever, therefore we can refer to

the qth time r occupies state err

This notation is Illustrated in Figure 1(b). One additional definition we need

is the cycle time of a process:'

Mr-1
cr - tn. For our example, ct = 5 and c2 = 3.

n=O

Mapping states to the model. In the geometric model, each process Is

associated with one axis of the Cartesian product R'XR*. Intuitively, the

sequence of states each process passes through is mapped to a sequence of

Intervals along its corresponding axis. The interval width corresponds to the

occupancy time of the corresponding state. This is illustrated in Figure 2.'

2 This definition reflects the ract that flow charts do not branch and processes loop rorever.

3 The cycle time is the time required to execute one loop of a process in the absence or blocking.

4 Although we show a finite portion of the plane, the reader should bear in mind that each axis
extends to infinity.
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Formally, the qth occupancy of state nr is mapped to the interval
n-1 n

[ qcr + Zt r , qcr -I 7t r ) along the axis corresponding to process p:
Z=O Z=O

In Figure 2 the first, second, and third occupancies of the EAT/RELEASE

state by process 2 are mapped to intervals [2,3), [5,6), and [8,9) along the y

axis.

The dashed lines in Figure 2, drawn at each state boundary, partition the

plane into a set of rectangles. Each rectangle potentially represents one

global state. Points within a rectangle represent all possible partial

executions of the global state.

Mapping program loops to the model. The heavy lines drawn every c1

units along the x axis and every c2 units along the y axis in Figure 2

partition the plane into quadrants. Each quadrant is uniquely identified by a

pair of nonnegative Integers, I and J. A point with x coordinate x0 and y

coordinate yo is in quadrant 1,1, where I = LxojciJ and j = Lyo/c 2J (see Figure

3). During execution, we can keep track of how many times each process

has looped through its code. This pair of integers corresponds to a unique

quadrant.

Mapping synchronization to the model. Synchronization between

processes Is represented as a finite set of constraints on when transitions in

a flow chart can occur. Each constraint specifies that a certain transition in

one flow chart must be delayed - and therefore the process must block -

until the other process leaves some sequence of states in its flow chart.

Returning to Figure 1, there are two constraints, indicated by dashed

lines. Process 1 (or 2) cannot enter the EAT/RELEASE state if process 2 (or

1) Is In the EAT/RELEASE state.

The geometric representation of a synchronization constraint is a set of

horizontal or vertical line segments In the plane placed at appropriate

boundaries of states to prohibit a transition into those states from occurring.

This is formalized as follows: Consider the synchronization constraint in

which process I cannot make the transition from state a4n to its successor
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while process 2 is occupying any of the sequence of states
2r 2,__ 2 o2,, ,
2, o2,n'+1 , 0 n'+2 .... nn,_1 o2,,, for n'< n". This constraint is mapped to

the following set of line segments:

n n'--I n"
{(x,y) I i,JeZ'; x=ic1 + Ztz ; Jc2 + Et 2 < y < jc2 + 2  }

z=O z=O z=O

(The complementary case, of a constraint that delays transition from state an

to its successor, is mapped to an expression similar to the above, in which

are interchanged variables x and y, variables I and j, and superscripts and

subscripts 1 and 2.)

Figure 4 illustrates the placement of constraint line segments for the

example of Figure 1. The set of line segments representing the constraint

out ofo60is {(x,y) Ii,j Z; x=5i+1; 3j+2y<3j+3).

Mapping program trajectories to the model. Earlier, we defined the

program trajectory to be the sequence of timings of global-state transitions a

program makes. This corresponds in the model to the model trajectory,

which is a possibly infinite sequence of rayss in the RXR* plane. Given a

point Q1 in the plane, the model trajectory starting at Q1 is recursively

defined as follows:

- If Q1 lies on a constraint line, the model trajectory consists of a ray

from Q1 to Q2 followed by a model trajectory starting at Q2. Q2 is the

end point furthest from the origin of the constraint line containing Q1.

- Otherwise, Q1 does not lie on a constraint line. A ray with slope 1 and

initial end point Q1 either: (1) will, or (2) will not eventually intersect a

constraint line. In case (1), the trajectory consists of this ray alone, of

S A ray is a directed line segment of possibly infinite length. A ray is directed away rrom its initial end
point. In terms or a program, the ray direction corresponds to the evolution or the program forward
in time.
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infinite magnitude. In case (2), let Q3 be the point at which the ray first

intersects any constraint line. The trajectory then consists of a ray from

Q1 to Q3 followed by a trajectory starting at Q3.

Informally, In the absence of synchronization constraints, the program

trajectory is represented by an Infinite ray (Figure 2). The ray slope of 1

represents the fact that both processes execute at the same speed and never

impede one another. Each way in which the diagonal may slice through a

global-state rectangle corresponds to different state occupancy times. The

global state corresponding to the end point of the vector is the initial

program state. The constraint lines alter the model trajectory in a manner

which represents the sequence of blockings encountered by the program

during execution. Blocking is represented by a vertical or horizontal ray in

the trajectory, corresponding to the case when only process 2 or process 1,
respectively, can execute. Figure 4 illustrates one possible trajectory.

Mapping initial conditions to the model. The geometric model can

represent any initial condition of a program. An initial condition consists of

two real numbers, representing the time at which each process is started.

Each initial condition corresponds to one point on either the x axis in the

interval CO,cl), when process 1 is started first, or to a point on the y axis in

the interval [O,c 2), when process 2 is started first. The origin corresponds to

the case when both processes start simultaneously. Henceforth, in drawing

the geometric model, we shall show the result of drawing the entire set of

possible trajectories for all Initial conditions by a shaded region, as

illustrated in Figure 5.

Manifestation of race conditions in the model. In our example, a race
condition occurs when both processes simultaneously request the chopsticks.

In the geometric model, a race condition manifests itself as a single point

which is the end point closest to the origin of both a horizontal and a

vertical constraint line (Figure 6). The behavior of any trajectory intersecting



this common end point is undefined, because we assume that any two

events in a distributed system are separated by a nonzero -amount of time.

Manifestation of deadlocks in the model. A deadlock is a global state in

which both processes are blocked. In the geometric model, deadlock

manifests itself as a trajectory which reaches a point in which it cannot make

progress by moving right, diagonally, or up (Figure 7). Trajectories in the

shaded region will deadlock. However, trajectories corresponding to initial

conditions outside this region will not deadlock. We assume the program

being modeled is deadlock-free, this problem having been solved by Lipski

and Papadimitriou [10] and Carson [3].

Manifestation of steady state In the model. In terms of the geometric

model, the steady state is represented by a trajectory consisting of either a

diagonal ray of infinite length or a finite sequence of possibly diagonal,

horizontal and vertical rays repeated forever.

THEOREM 1. In the absence of deadlock and race conditions, a program

fitting our model always reaches steady state.

PROOF. Let k denote some constraint line. Consider the diagonal

trajectory ray leaving the end point furthest from the origin of k. The ray

either will intersect exactly one constraint line k', because we prohibit race

conditions, or it will never intersect a constraint line. If no intersection

occurs, the program will repeat a sequence of global states forever, thereby

reaching steady state. Otherwise constraint k' may have the diagonal

trajectory rays of several other constraint lines intersect it, but the trajectory

of all of these will be mapped to the end point of constraint k' furthest from

the origin. Therefore, we can construct a finite, directed graph in which each

node corresponds to one constraint line. The graph contains a directed arc

from the node corresponding to constraint k to the node corresponding to

constraint k' If and only If the trajectory leaving constraint k Intersects k'. All
cycles in the graph are of finite length and represent steady states. 0
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Modeling Other Forms of Synchronization. Because we are analyzing

programs with reusable resources, the number and spatial arrangement of

constraint lines in each quadrant is identical. We can represent more general

synchronization semantics by slightly generalizing our definition of
"constraint" to distinguish the first, second, etc. transitions of a flow-chart

node. In the geometric model, the constraint lines will cross the boundaries

of quadrants. The general case is discussed in [1].

However, we restrict our attention to reusable resources because this

case Is more difficult to analyze than other types of synchronization. This Is

because we only know the global state at the moment both processes start

execution. The asynchronous nature of the processes precludes a priori

knowledge of the global state at any later time.

4. Formal Problem Statement

The fundamental analysis problem treated here follows. The geometric

model consists of the following input parameters:

- The cycle time of each process: c1 E R + and c2 e R +

- The number of constraint lines in each quadrant, N e Z+.

- For each constraint line k e (1,2, ... , II

- the abscissa of the top or right end point, Xk e R +,

- the ordinate of the top or right end point, Yk E R

- the length, Ike R + ; by convention Ik is positive if and only if line k is

vertical.

' Recall that each quadrant contains the same number, lengths, and spatial arrangement of constraint
lines. Each constraint line in a quadrant is identified by an integer k e (I .N]. Thus, when we refer to
.constraint line k," we mean a replica of the k"h constraint line in any quadrant. To uniquely identify
a constraint line in the plane, we must specify both its index k and the number i~j of the quadrant
containing the line.

" Note that the sign or parameter I, and function w, introduced below, encode which process blocks.
This avoids the need for additional variables.
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The output of the geometric model is two functions,

p: {1,2,..., N} X (1,2,..., N} --i R* (parallel) and w: {1,2,..., N)X {1,2,... , N) -+ R

(wait). These are defined as follows:

- In terms of the program: Consider the moment both processes have

just completed synchronization at constraint k, and Ignore all

synchronization constraints except k'.

p(k,k') Yields the length of time both processes execute in parallel

before synchronizing at constraint k'. If the processes never

synchronize: p(k, k') = 00.

w(k,k') Represents the time one process spends blocked or waiting at

constraint k'.

- In terms of the geometric model: Suppose we draw a diagonal

trajectory starting at the end point of k furthest from the origin until the

trajectory Intersects any replica of constraint k'.

p(k,k') Yields the trajectory length, projected on either the x or y
axis. If the diagonal threads its way between replicas of

constraint lines k' In the plane forever, without Intersection,

w(k, k')= oo.

w(k,k') Yields the distance between the intersection point of the

trajectory and constraint k' and the end point of k' furthest

from the origin. If no Intersection exists, w(k, k') = 0. The sign

convention of w(k, k') Is the same as used for lk,. Thus,

negative w indicates process 2 is waiting.

To find the sequence of constraint lines the steady-state trajectory intersects,

we find that value of k' which minimizes p(k, k') for each k. From Theorem 1,

this sequence will contain one or more cycles, each cycle being a

steady-state behavior.
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Example. In Figure 5, let the vertical constraint line be Indexed k = 1, and
the horizontal line k =2. The Input parameters to the geometric model are

c= 5, c2 = 3, N = 2, (x1, Yl, 11) = (1,3,1), and (x2 , Y2, 12) = (5,2, - 4). The

output functions from the geometric model, are:

k k' p(k,k') w(k,k')
1 1 5 1
1 2 2 -2
2 1 6 1
2 2 3 -2

Because p(1,2)< p(1,1), when the program leaves constraint 1 it next
synchronizes at constraint 2. Because p(2,2) < p(2,1), when the program

leaves 2 It synchronizes next at constraint 2. Therefore, there is only one

steady-state cycle, consisting of synchronization repeatedly at constraint 2.
Further, the steady-state trajectory consists of a diagonal ray whose length

projected on either axis is p(2,2) = 3 followed by a horizontal' ray of length

Iw(2,2)1 = 2 time units. In terms of the program, in steady state both
processes run In parallel for 3 time units, then process 2 blocks for 2 time

units.

5. Model Solution Alternatives

A difficult aspect of this work was discovering a simple and straightforward
framework within which to describe and solve the model. Thus, we

considered three alternate approaches:

(1) Computational geometry algorithm: -his draws the graphs of the model

(e.g., Figure 5). It is the approach used In the geometric model-based

The ray i horizontal becaium, t sign of w(2.2) is negative.
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deadlock detection algorithms in [10] In two dimensions, and in [3] in

N dimensions. In our algorithm, we step a "sweep-line" [15] across

the plane. We keep track of what points or Intervals of points along the

sweep line correspond to active trajectories or shaded regions. At each

step, this information is updated depending on which constraint lines

intersect the sweep line.

(2) Integer programming. For each pair of constraints k and k', we minimize

the length of the diagonal trajectory ray with one end point on

constraint k, subject to the condition that the x and y coordinates of the

other end point of the trajectory lie between the x and y coordinates of

the end points of some replica of constraint k'.

(3) Analytic solution. This Is discussed in successive sections.

The first two methods share three deficiencies:

(1) Potentially infinite search space. Neither method will terminate in a

solution if the diagonal trajectory leaving a constraint k never Intersects

another constraint.

(2) Time wasted searching infeasible points. In Integer programming, each

replica of constraint k' examined may or may not be a feasible solution.

In the computational geometric algorithm, some points and intervals of

points along the sweep line do not need updating because no

Intersection occurs there. These may be thought of as "infeasible

solutions."

(3) Limited insight into relationship of model inputs and outputs. We want to

qualitatively understand the relationship of model outputs upon inputs.

For example, how does constraint line length affect waiting time, and

what Influences the number of steady-state cycles?
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These deficiencies are overcome through the analytic solution presented

next. The analytic solution Is based on the observation that because each

quadrant contains a replica of the same constraint lines, we ought to be able
to analyze equivalently either a single quadrant or the entire plane. This
duality manifests Itself naturally In the mathematics through modular

arithmetic.

A complete analytic solution to the problem requires us to obtain an

analytic expression for two minimizations of arithmetic functions occurring in

the analysis. These are challenging in and of themselves. So far, we have
worked out the case of N = 1 [1]. In this paper, we solve the general case

by evaluating numerically the minimum in Section 7. This numerical method,

in comparison to the computation geometric and Integer programming

algorithms, examines only a finite number of feasible solutions. Therefore, it

Is guaranteed to terminate in a solution, avoiding the first two deficiencies

listed above.

6. Analytic Solution

Consider an arbitrary constraint line k. To obtain the steady-state behavior,
we must solve two problems:

(1) Find the necessary end sufficient condition for the diagonal trajectory ray

leaving k to intersect any constraint line, say k'.

(2) Provided the intersection with k' occurs, find the quadrant in which the
first intersection with k' occurs, from which functions p(k, k') and w(k, k')

may be determined.

In the process of solving the first problem, we shall formulate an
equation solving the second. A solution will exist if and only If an
intersection occurs. The equation Is formally derived In Chapter 5 of [1],
however in the interest of space the equation is informally presented below
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Consider the case when k - k', as illustrated In Figure 8(a). The diagram

shows that after the program has completed synchronization at constraint k,

process 1 makes two complete loops before it must block, and blocking

starts within the third loop of process 2.

An alternate view is given by the time lines shown in Figure 8b. Time

zero represents the moment both processes leave synchronization constraint

k. Process 2 can never block, because the constraint is vertical; thus

process 2 constrains process 1 In time Intervals [c 2 - k,, c2), [2c2 - Ik, 2c 2),

.... Further, process 1 will request the resource at times c1 , 2c1 , 3c,.... until

some time that is an integral multiple of c1 and lies within the interval when

process 2 constrains process 1. Therefore, blocking occurs if and only if

31 - Z, 362 - Z, 9 cl-61  [c26 2 -1 c2,C 2) . (0)

For example, in Figure 8a 61 = 2 and 62 = 3 satisfy (0). In terms of the

program, the smallest 61 and 62 satisfying (0) represents the number of

loops processes 1 and 2 make, respectively, before synchronization. In terms

of the geometric model, the smallest 61 (62) yields the number of quadrants

which a trajectory leaving constraint k and intersecting constraint k' moves

through horizontally (vertically). Therefore, if constraint k lies in quadrant i,j

and constraint k' lies in quadrant i', 1', then

61..- I
62=i,_I

Expression (0) Is equivalent to the condition that blocking occurs If and only

if

361 ez ', 3r 2 Ez', ]be(O,y Ik] c16 - c2 '62 +fb= O
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where b assumes real values. Because a different value of 61 and 62 will

satisfy the above equation for each value of k and k', we shall henceforth

denote 61 and 62 by 61(k,k') and 62(k, kD), respectively. Furthermore, from

Figure 8(b) the quantity b is seen to be the blocking time w(k, k'). Therefore,

the above equation becomes

c1 "6t(k, k') - c2 62(k, k') + w(k, k') = 0 , (la)

where

w(k, It) e (0, Ik,]  (I (b)

Equation (1) must be modified for the case of k # k', as illustrated in Figure

9(a). Here, the horizontal constraint line Is k, and the vertical line k'.

Because thi trajectory starts at constraint k and not k' implies that the origin

of each time axis In Figure 9(b) Is shifted by the difference in the x and y

coordinates of the end points of constraint lines k and k' furthest from the

origin. Thus, the steady-state equation becomes:

c161(k, k') - c262(k, k') + w(k, k') + (yk - Xk) - (yk - Xk') = 0 . (2)

Equation (2) Is the central equation of this paper. We shall shortly show how

to obtain p(k, k') from 6 1(k, k') and 62(k, k'). Three difficulties arise in solving

eq. (2):

(1) 61(k, k') and 62(k, k') can only be integers, although all other variables

and functions in eq. (2) are real quantities.

(2) We must find when a solution exists, and the number and form of the

solutions.
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(3) Two minimization problems are Involved:

- Find which value of w(k, k') in the range (ib) -minimizes 61(k, k')

and 62(k, k') for every k and k'.'

- From 61(k, k') and 62(k, k'), we shall find p(k, k'). To find the

sequence of constraints the trajectory intersects, we must find the

minimal value of p(k, k') for each k, over all values of k'.

The first two problems are solved below by transforming eq. (2) Into a

Dlophantine equation,' and applying known methods. However, the third

problem is difficult. To the authors' knowledge finding minimum integer

solutions is not addressed in the literature. Solutions to these problems are

presented next.

Earlier, we defined c1 and c2 to be real quantities. For the following

analysis, we shall assume that c1 and c2 are rational quantities," or

equivalently relatively prime integers. To demonstrate the equivalence, we

can multiply all Input parameters (c,; c2; and vkcE1,N] Xk, Yk, Ik) by the factor

L/G, where L Is the least common denominator (t.c.d.) of c1 and c2, and G is

the greatest common divisor (g.c.d.) of c, and c2. Further, we must multiply

output functions w(k, ') and p(k, k') by G/L. These substitutions result in the

multiplication of each term in eq. (2) by the factor L/G.

If eq. (2) has a solution, it win no( be unique. In Figure 9(a), the Jirs, time process I leaves
constraint k and intersects constraint k. process I will wait. This correponds to the minimum
number of loops each process makes before synchroni in. and hence the minimum positive integers
6 1 k.k-) and 5(k.k) salwyg eq (2). Larger values of A,(k.k') and A(k.k*) correspond to the second
and successive time proem I laves constraint k and intersects otraint k'.

A Diophantine equation has integer coefficients and unknowns, as discussed in [9].

o 1he sulbsequent results do not apply to processes whose cycle tine is irrational Although this case is
themrticaly intreting, in practice we measure programs using only rational numbers (e.g. all
measurement have a precision of one microsecond).
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Because the quantities 61(k, k'), 62(k, k'), cl, and C2 are integers, the

expression v~k, k') + (Yk-Xk)-(yk-Xk,) must also be an integer. We

represent this expression by a new function:

4(k, k')= w(k, k') + (Yk - Xk) - (Yk - Xk') (3)

then eq. (2) may be simplified to the following Diophantine equation:

cl 1 l(k, k') - c262(k, k') + 4(k, k') = 0 . (4)

We can establish bounds of the value of 4(k, k') based on the bounds of

w(k, k') in (Ib):

kvk, k') e ((Yk - Xk) -(Yk" - Xk'), (Yk - Xk) - (Yk" - Xk') + Ik' ]. (5)

6.1 FINDING CONDITION FOR INTERSECTION. Theorem 3.3 in [9] states

that:

A necessary and sufficient condition for the Diophantine equation

a1z1 + a2z2 + ... + anZn = d to have a solution is that the g.c.d. of

the al's divides k.

By this theorem, if we consider for a moment 4(k, k') to be an integer

constant d, then the equation c61c5(k, k') - c262(k, k') + d = 0 has a solution

if and only If the g.c.d. of c1 and c 2 divides d. Because c, and c 2 are

relatively prime, a solution exists If and only if d can assume an integer

value In the Interval of (5).
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This establishes the following theorem. In the theorem, Q(k) represents a

set whose members are Indices of constraint lines, in [1,N]. Index k' E f2(k)
if and only if a diagonal trajectory ray leaving constraint k intersects

constraint k', in the absence of other constraints.

THEOREM 2. Consider a program fitting our model containing constraint

lines 1,2,...,N replicated in every quadrant. Let k, k'E [1 ,N]. Then k'e f2(k) if

and only if the Interval ( (yk - Xk) - (Yk - Xk0), (yk - Xk) - (yk- - Xk)

+ I ] contains at least one integer.

Example. For the program in Figure 1, by Theorem 2 1(1)= (1,2) and

fl(2) = {1,2}. For example, 2e 1(1) because the interval [-3,1) contains

integers (namely, -3 and -2).

6.2 FINDING FUNCTIONS P AND W. Next, we solve eq. (4) for unknowns

6 (k, k'), 62(k, k'), and 4(k, k'). We apply the solution technique for three
variable Diophantine equations in [9], pp. 67-68. There is an infinite number

of solutions, and these are expressed in terms of a parameter o as follows:

51(k, k') = c2a + v-W(k, k') (6a)

2(k, k') = cla + u.kk, k') , (6b)

where ot r Z, and u and v are integers satisfying"

c2 u-clv = 1 . (7)

In terms of a program, there Is a unique solution, corresponding to that

value of Wk, k') minimizing c5(k, k') and (k, k') . Rather than finding this, we

obtain a relation between p(k, k') and 61(k, k') and 62(k, k') in the following

lemma, and then minimize p(k, k').

12 A solution to eq. (7) may be found by solving the following linear congruence by known methods:
c., I (mod c,).
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LEMMA

5 00 if k't 11(k)

p(k, k') - cl 1c(k, k') + xk, - xk  If k' Is vertical A k'c fl(k)

c262(k, W) + Yk, - Yk If k' is horizontal k'e n(k)

PROOF. There are three forms for p(k, k') In the statement of the lemma;

we shall consider each case in turn.

Case 1: k'ffl(k)

By definition p(k, k')=oo.

Case 2: k' is horizontal and k'e l(k)

Constraint k may be either horizontal or vertical; this has no

bearing on the proof. The length of the projection of the trajectory

on either the x or y axis is the same. We shall choose the y axis,

as Illustrated in Figure 10, to avoid calculating the coordinates of

the Intersection point. Assume constraint k Is In quadrant i,j. The

y coordinate of all points of constraint k', including the

Intersection point with the trajectory, is Yk" + c2j'. Assume

constraint k' is in quadrant I', j'; Its end point furthest from the

origin is Yk + c2j. Their difference, c2(j' - J) + Yk' - Yk -

c2 2 (k, k') + Yk' - Yk, is the y axis projection we seek.

Case 3: k' is horizontal and k'e 1l(k)

Transpose x and y, I and 1, i' and j', 1 and 2, and "vertical" and

"horizontal" In the previous case. 0

Now, using eq. (6) we eliminate 61(k, k') and 62(k, k') from the lemma and

obtain our final form for p(k, k').
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THEOREM 3. Consider a two-process program fitting our model containing

constraint lines 1,2,...,N replicated In each quadrant. Let k, k' e [1,N] and

k'efl(k). Then the length of the perpendicular projection on the x or y axis of

the diagonal trajectory ray between constraint k and Its first intersection with

constraint k' is given by the following expression:

A
ClV.W(k, k') + Xk, - Xk if k' is verticalf c lv. k, k') - c2 Cl C2  + Xk, - Xkp(k, k') "-=

},c2(u-4(k k') c 1 c CC(k, W) + y - Yki + Yk' - Ykif k' is horizontal

where 4(k, k') is the value in the range of (5) yielding the minimum

nonnegative value for p(k, k').

PROOF. Suppose constraint k' is vertical. Then substituting eq. (6a) for

61(k, k') in the lemma yields

p(k, k') = c1(c2a + v.W(k, k')) + xk, - xk (8)

To eliminate a, recall that the domain of p(k, k') is R':

p(k, k') 2 0

Substituting eq. (8) and solving for a yields

cav' a-k, k') + xk, - xk

Cl C2

The minimum Integer c satisfying the Inequality Is
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ClV- k, k')+ XkW - Xk

Using the fact that r'-x] = - LxJ for any x, and substituting L into eq. (8)
we obtain the expression given in the theorem for vertical k'.

The remaining expression In the theorem, for horizontal k', is obtained

similarly. We substitute eq. (6b) for 62(k, k') in the lemma when k' is
horizontal and eliminating a in the same manner. 0

Example. Earlier, we tabulated the values of p(k, k') for all k, k'. For

example, p(1,2)= 2. This value may be derived from Theorem 3 as follows.

Because k' = 2 Is a horizontal line, and u -7,

By eq. (5), iZ(1,2)e [1,5). Tabulating p for all possible values of w yields

4-(=,2) p(1,2)

1 5
2 11
3 2
4 8

The minimum of p occurs at ki(1,2)-3, where p(1,2)= 2 and, by eq. (5),

w(1,2)= -2.
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7. Algorithm for Numerical Solution

The formulas derived above are not in closed form because we require the

two minima discussed earlier:

(1) To solve for trajectory length p(k, k') and function W(k, k') in the

expression of Theorem 3 requires finding the integral value of Wi(k, k')

in the interval (5) minimizing p(k, k').

(2) To find the sequence of constraints the trajectory intersects requires

taking the minimum of p(k, k') for each k, over all k'ei(k).

Next, we present algorithm GM to numerically evaluate the minima. We

first Introduce three functions to formalize the minimization problems:

s: {1,2 ... N} -+ {1,2,... ,N) Function s(k) yields the index of the constraint

line which a trajectory leaving constraint k next

intersects. Formally, if k'ofl(k) then s(k) = oo;
A A

otherwise s(k) k k e1,N] / Vk' e [1,N],

p(k, k)- p(k, k').

p: {1,2, ... N}-- R" Function p(k) yields how long both processes

execute in parallel after they have synchronized

at constraint k. Formally, if k'OQ(k) then p(k) = oo;

otherwise p(k) = p(k,s(k)).

w: {1,2 ... N) -- R Function w(k) yields the time one process spends

blocked due to constraint s(k) after leaving

constraint k. Negative (positive) w(k) indicates

process 2 (1) waits. Formally, if k'J)(k) then

w(k)-= 0; otherwise w(k) = (k,s(k)) +

(yk' - Xk') - (yk - Xk), where i (k,s(k)) Is the value

In the range of (5) minimizing p(k,s(k)).

- -
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Algoritnm GM

Integer k, kc, z, u, v, (N], n4N];
float c,, c , LG, IN,N]., p IN] iNj, xfNj, y(Nl, 4N];
-et Qlj of INj;

0. /s Initiaization */
Inut c,, c2, N
LG: - (led. of c,, c2)/(g.c . of c, c2)
Vk, do

-Iut x[k], j k], 1(k]
x[k]: = x(k]'LG; y~k]: = y(k]'LG; 1(k]: = 1(k].LG
od

c,:- c,'LG; c2 := c2"LG
sole c2u- I (modc,) for u- v=(c2u- I)/c,
Vk do_- Y k', Al1k, k')]: - k- (.Vk,- Xk,)

(lk]:= 0; 4kl:= M~kl:= 00

od

I. P Calculate Q[k */
VkVk', if ContainslnK(A[k, kc], A[k, k' + lk,) then (kj : = 01k] U {k'} i

2. Calculate functions s and p /

If k'e l(k] then
for ze (A(k, k'],A(k,k' ]+ liej do

if P(c,, cj,u,v,xpk, k',z) < plkl then
4k1: = k'; pfki: = P(c,, cj,u,v,x,y,k, k',z); mlk: = z Ii od

fl
Vk, If (p[k] # oo) then p[k] : - p[k]ILG fi

3. I Calculate function w #/
Vk, wJkl: - if Olkl = 0 then 0 else (mki - A[k,s:k]])/LG Ii

Notes:
(a) Unless otherwise specified, domain of Yk and Vk' is 1l,N].
(b) Continslngo,,co.) = (L wi J - L co2 J)#* 0

Algorithm GM collects the previous expressions to completely specify how to

calculate output functions s(k), p(k), and w(k) in the geometric model given

input parameters c,, c2, N, Xk, Yk, and Ik .

7.1 OVERVIEW OF GM. First, we briefly describe algorithm GM. We

assume that the values Xk, Yk, and Ik for each constraint line ke (1,N] are
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stored in arrays x[N], y[N], and I(N], respectively. For efficiency, we

introduce array A[k, k'], which stores the difference (Yk - Xk) - (Yk' - Xk)"

The algorithm uses one new piece of notation: P(k, k', z). This denotes

the expression for p(k, k') In Theorem 3, with the value z substituted for

4(k, k') In the theorem.

Step 0 initializes several variables. Next, Intersection set 0 is calculated

in step 1 using Theorem 2. In step 2, function P(k, k', z) is evaluated using

Theorem 3 at each Integer value In its domain, (A[k, k'], A[k, k'] + 1k, ] to

calculate functions s(k) and p(k). Because c, and c2 were multiplied by LG to

convert them to relatively prime Integers In step 1, function p(k) must be

rescaled in step 2 by 1/LG. The minimum value of 4(k, k') satisfying

Theorem 3 for all k is stored in array m. This allows the calculation of

function w(k) in step 3, which must also be rescaled by the factor 1/LG.

7.2 COMPLEXITY OF GM. Letting N be the number of constraint lines,

the storage required is 8N + r IogwN] + 8, where W is the number of bits in

a memory word. This consists of:

- 3N memory cells for x[N], y[N], and I[N], storing each constraint line

- one cell each for variables k, k', z, u, v, c1 , c2 , and LG

- N2 cells for A[k, k']

- N2 bits, or f IogwN] words, for set fl, with one bit per pair of

constraints

- 3N cells to store functions s, p, and w as arrays

- N cells to store array m.

The execution time of algorithm GM is given in Table 1, in terms of the

number of assignment statements executed. We make the following

assumptions. The time required to calculate LG and solve the congruence in

step 0 by known methods is represented by r; this quantity depends on the

magnitudes of c, and c.. Also, the time required to input data equals the

mX
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number of values Input: 3 + 3N. The time to execute Wk, fl(k): = is

amumod to be .owNi

TABLE I Execution time of algorithm GM

Step Time

0 G+'r+ rlowNl +a++N 2

wors: 2N2
1

best: N2

worst: 3N2D + N
2

best: 0

worst: N
3

best: 0

In step 1, the Contalnsint expression is evaluated N2 times. The worst case

occurs when the in clause is executed all N2 times. In step 2, the

z E (A[k, k'], Afk, k'] + Ik, term can be executed for 0 to D times. D is

defined to be the maximum number of integers in interval

(Afk, k'], AMk, '] + Ik'J In step 2 the best case occurs when Vk, f)(k) = 0. The

scaling of p(kj in step 2 occurs at worst N times.

Summing the entries of Table I yields a worst time of

3N2(D+ )+1ON+ r logwN +r+6, and a best time of 2N 2 +SN+

r logwN + r + 6. Thus, the worst running time is (N2 D) and the storage

space 0(N).

In practice, the N2 term Is not very restrictive, because two precess
algorithms usually have a fairly small number of synchronization constraints.

The D term, however, may force us to make approximations. In step 0, we

map any rational cycle time c, or c, to relatively prime integers by
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multiplying both cycle times by LG. Thus. D will grow with the product LG c,

or LG-c, which Is the ratio of the cycle time to the resolution of the

measurement clock. For example, If we measure an algorithm to

microsecond resolution, LG Is at most 10P. If c, - c, - 100 seconds, then

D - 300"106. However, we may be willing to trade accuracy for computation

time by approximating measurements by milliseconds, so that D = 300.10 3

The dependence ov complexity on D Is the major disadvantage of

algorithm GM. However, algorithm GM has an Important advantage: It will

always terminate in a solution In a bounded number of steps. This Is not

true for the computational geometry and Integer programming techniques

discussed earlier, which will not terminate in a solution if ki f((k).

It is important to realize that the dependence of complexity on D and N

Is only a property of algorithm GM and not of the geometric model itself If

we could find a closed form expression for p(k) and s(k) (as in [1] for

N = 1), then we would not require any algorithm at all.

8. Example

In the following example, we Illustrate an important property of the geometric

model: We can use algorithm GM to solve the model at a small number of

Input parameter values, and yet interpolate the model outputs over all

intermediate Input values and still obtain the exact model solution.

That we can do this is not obvious, because functions p(k) and wk) are

discontinuous with respect to c, and c,. Figure 11 illustrates blocking times

w(1) and w(2) for the program in Figure 1. The time process 2 spends in the

THINK/ACQUIRE state - denoted ta - Is varied between 0 and 80. The

other state occupancy times are fixed to be:

Sha&..Lf
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Process State Occupancy time

1 THINK/ACQUIRE 14
1 EAT/RELEASE 14
2 EAT/RELEASE 16

The functions plotted in Figure 11 are obtained In the following manner:

(1) We solve the geometric model for an arbitrary value of IS. say 22 The

result Is shown In Figure 12.11 The steady-state trajectory consists of a

diagonal ray and a vertical ray of length 12. Therefore, at to= 22,
(1)= 12 and w(2)= 0, as shown In the graph of Figure 11.

(2) Increasing t corresponds to "stretching" the geometric model in Figure

12 vertically, but keeping the constraint line lengths and horizontal

dimensions constant. Thus, Increasing t6 by 4 units causes the diagonal

trajectory ray to reach a race condition, where the vertical and

horizontal constraint segments intersect. Thus, we can deduce that the
2 2graphs of w(1) and w(2) are linear between ta - 22 and tB = 26

(3) Now, we choose a point slightly larger than the discontinuity at t5 = 26,
2 6say t -30. The resulting geometric model is shown in Figure 13 Here,

the steady state consists of a diagonal ray of projected length 32. then a

horizontal ray of length 6, then a diagonal ray of project length 14, then

a vertical ray of length 2. Thus, in Figure 11 we plot w(1)= 2 and

w(2)- 6 at 2 - 30.

I, T1w dasWd lOnes in Figures 12 and 13 awe drawn every 4 time units in the x and y directions to
assist the reader in idmntifying e coordinates of varios point% in the diagram
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(4) From the geometric model in Figure 13, we can deduce, by again

considering the effect of stretching the diagram vertically, that w(1) and
2= 2 2 _w(2) are linear and continuous between t;-26 and t6,= 40 At t6 - 40,

w(2) becomes 0 because the steady state changes to omit the horizontal

ray.

(5) This process is continued to build the graph of Figure 11.

This example illustrates two things. First, we only need to solve the

geometric model for two sets of input parameters to deduce the behavior for
212 < t< 40. Second, graphs of w and p are discontinuous at points

corresponding to a change in the number or orientation of rays of the

steady-state trajectory.

9. Conclusions

We have presented an exact analysis of two process, deterministic

distributed programs whose synchronization code is not embedded in

conditionally executed code. Using the geometric model, we can obtain the

sequence of synchronization points where the program blocks during steady

state [function 9(k)], the blocking durations [w(k)], and the duration of

concurrent execution between synchronization points [p(k)].

The most pragmatic alternative to using the geometric model today is

simulation. (Given an initial program state, a simulator will generate

successive global states, thus enumerating the initial part of a trajectory A

simulator could be programmed to stop when it detects the first cycle.) The

geometric model offers several advantages over simulation:

(1) A single solution of the geometric model yields performance at all initial

conditions, whereas simulation only yields the behavior at one initial

condition.



(2) The geometric-model solution can be used to calculate the boundaries

within which the solution Is linear We then know at what interesting

parameter values to resolve the model, and where the discontinuities lie

in wide parameter ranges.

(3) The simulation duration Is proportional to the sum of the duration of the

transient and the steady-state period. However. algorithm GM is

independent of these two quantities.

The chief qualitative result of the geometric model is that in the absence

of race conditions and deadlocks, a program fitting our model always settles

into a steady-state behavior consisting of a repetition of a finite sequence

and timing of global-state transitions. There may be several steady-state

cycles, depending on the Initial condition. This is illustrated in Figure 14,

where on* steady state involves no blocking, while the second requires

blocking at both constraints.

There is some similarity between distributed programs and classical

dynamic systems, such as electrical circuits with feedback. Dynamic systems

may reach a limit cycle behavior, analogous to the cyclic state transitions

studied here.

Furthermore, we have some experimental evidence of the similarity In

(1], we measured a Dining Philosophers algorithm with between four and 64

processors. For small numbers of processes, the global-state transition

sequence is deterministic. Starting at about 22 processors, small

perturbations occur in the steady-state cycle for short instances of time, after

which the program returns to steady state.

However, distributed programs are dissimilar from dynamic systems

because of discontinuities. If we vary a constraint length or cycle time in a

program, the blocking time will change linearly within a certain interval.

However, If the variation is large enough, the algorithm will change
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steady-state cycles, so that the blocking times and sequence of constraints

intersected change discontinuously.

Discontinuities complicate design and tuning of a distributed program,

because a programmer is unaware of the discontinuity locations. This causes

counterintuitive behavior, such as when one process is speeded up, the

overall program performance is degraded.
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